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Abstract 
Subdivision surfaces are a powerful model widely used in 
geometric modelling. Controlling the accuracy of the 
approximation of the limit surface often involves the computation 
of the distance between the control mesh and the limit surface. 
Nevertheless, the a priori level (or depth) of subdivision based on 
a distance criterion has not yet been expressed. The goal of this 
paper is thus to compute this level. Then the surface can be 
subdivided with a given accuracy without any distance 
computation between the subdivision surface and the limit 
surface. 
Keywords: Subdivision surface, distance, levels of subdivision 

1. INTRODUCTION 

Since the 1980’s, subdivision surfaces have been used in various 
fields such as multiresolution graphics, geometric modelling or 
character animation (for instance: Geri’s Game (1997), Toy Story 
2 (1999), Monsters, Inc. (2001)). Their success is due to the fact 
that they combine the advantages of both polygonal mesh and non 
uniform rational B-spline (NURBS). Indeed, like polygonal 
modelling, subdivision surfaces can be applied to arbitrary 
topology meshes. Moreover, like NURBS, they involve a small 
set of control vertices. 

Subdivision surfaces are defined by an initial control mesh and a 
set of refinement rules. The application of refinement rules 
generates a sequence of increasingly fine control meshes. These 
control meshes are often referred to as polygonal meshes or 
polyhedrons. The sequence of control meshes converges to a 
smooth surface called the limit surface. There are two sorts of 
subdivision schemes: schemes which rely on interpolation (e.g. 
Butterfly scheme [5]) and those which make use of approximation 
(e.g. Catmull-Clark [2], Doo-Sabin [4], Loop [8] schemes …). In 
this paper, only approximating schemes are considered. Their 
control meshes converge to the limit surface at each step of 
refinement (Figure 1). The maximum distance D  at the initial 
level is always larger than the distance d  at the next level and so 
on. 

 
Figure 1. Distance in approximation schemes. 

Each subdivision step provides a more accurate approximation of 
the limit surface. 

Subdivision is often stopped after a pre-determined number of 
steps (6-8 generally looks correct), when the surface seems 
smooth enough, when the largest triangle dimension or the 
average triangle size is less than a given threshold [13]. In most 
cases, these criteria are sufficient, but in certain cases, such as 
computer aided geometric design, the accuracy of object 
modelling has to be precisely determined. Using the distance 
between a vertex of the control mesh (which is an approximation 
of the limit surface) and the limit surface offers two ways of 
controling the subdivision level. 

• In the first option, this distance, combined with local 
properties of subdivision, allows us to subdivide the surface 
only where this distance is greater than a given threshold, 
saving a lot of triangles: this is termed adaptative subdivision. 

• In the second, we can compute the number of a priori 
subdivisions required to approximate the limit surface within 
a given accuracy. This allows us to predefine storage amount 
and save distance computation when subdividing, which may 
be useful for real time applications (video games, virtual 
reality...). This also gives a priori knowledge of levels of 
details which is useful in some view dependent immersive 
applications, for instance. 

Moreover, when accuracy is not a major constraint, one may wish 
to know how the levels of subdivision increase when accuracy 
increases. A small benefit in precision may involve a huge 
memory increase and one may wish to strike a good trade off 
between accuracy and levels of subdivision. 

Since the introduction of subdivision surfaces by Catmull-Clark 
[2], Doo-Sabin [4] in 1978 and Loop [8] in 1987, various 
subdivision schemes have been proposed and analysis of the limit 
surface has been carried out. Stam [14, 15] derives an analytical 
expression for a set of eigenbasis functions which evaluate the 
surface. Zorin’s work [16] extends these results by considering 
the subdivision rules for piecewise smooth surfaces with 
boundaries depending on parameters. Nairn et al. [12] studied the 
distance between a Bézier curve segment and its control polygon. 
The work of Lutterkort and Peters [9] develops a framework for 
efficiently computing enclosures for multivariate polynomials. 

Nevertheless, the a priori level (or depth) of subdivision based on 
a distance criterion has not yet been expressed. The goal of this 
paper is thus to compute this level. Then the surface can be 
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subdivided with a given accuracy without any distance 
computation between the subdivision surface and the limit 
surface. 

To our knowledge, only Cheng [7] has proposed an expression for 
the Catmull-Clark scheme. Our paper also deals with the Doo-
Sabin and Loop schemes. In addition, this method can be 
extended to other subdivision methods. 

The paper is organized as follows. Section 2 is a brief review of 
the main subdivision surface concepts that we need in our paper. 
In section 3, we explain how to compute the a priori number of 
levels of subdivision based on a given distance to the limit 
surface. This computation is performed on the traditional Catmull-
Clark, Loop and Doo-Sabin schemes. Results are also shown in 
this section. Finally, directions for future work are proposed in the 
conclusion. 

2. SUBDIVISION SURFACES 

In this section, traditional subdivision schemes are briefly 
described and an upper bound of the distance between the control 

mesh and the limit surface is given. We denote kM  (bold 
character) the control mesh at the subdivision level k . 

2.1 Traditional subdivision schemes 
2.1.1 Catmull-Clark scheme 

 

Figure 2. Catmull-Clark subdivision around the vertex 0v  with 
valence n . 

This scheme can be applied on an arbitrary mesh 0M ; it generates 
tensor product bicubic B-spline surfaces. Regular vertices for this 

scheme have valence 4. Each vertex of 1k +M  can be associated 

with a face, an edge or a vertex of kM . These vertices are called 
respectively face vertices, edge vertices or vertex vertices and are 

denoted , ,f e v . Let 0v  be a vertex of the initial mesh 0M  with 

valence n , Figure 2 shows the subdivision process around 0v . 
The superscript represents the refinement level. The face vertex is 
the centroid of the corresponding face. The edge vertex is 
computed as follows:  
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where subscripts are modulo n  (the valence of the vertex 0v ). 

The vertex vertex is then computed thus:  
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Distance to the limit surface. 

Given the previous notations, the image v∞  of the vertex 0v  with 
valence n  on the limit surface can be written [6]: 
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(3) 

2.1.2 Loop scheme 

 
Figure 3. Left, an initial face. Right, the 4 new faces. 

The Loop scheme generalizes quadratic triangular B-splines and 
the limit surface obtained is a quartic Box-spline. This scheme is 
based on splitting faces: each face of the control mesh at 
refinement level k is subdivided into four new triangular faces at 
level 1k + . This first step is illustrated in Figure 3. Consider a 
face: new vertices are inserted in the middle of each edge, they are 
named odd vertices and those of the initial face are named even 
vertices. 

 

 
Figure 4. Loop masks where  represents old vertices and   

the new position of an even vertex (left: (a), (b)) and an odd 
vertex (right: (c), (d)) respectively. 

In the second step, all vertices are displaced by computing a 
weighted average of the vertex and its neighbouring vertices. 
These averages can be substituted by applying different masks 
according to vertex properties: even/odd, interior/boundary 
(Figure 4). The (a) sub-figure represents the interior even vertex 
mask where n denotes the vertex valence and β  is chosen to be:  
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The (b) sub-figure represents the crease and boundary even vertex 
mask. The (c) sub-figure illustrates the interior odd vertex mask. 
The (d) sub-figure shows the crease and boundary odd vertex 
mask. 
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Distance to the limit surface. 

Let 0

0
P  be an even vertex with valence n . Its image on the limit 

surface is obtained using the even neighbouring vertices 0

1
P , 

0

2
P ,…, 0

n
P . Thus the image 

0
P

∞  of the vertex 0

0
P  with valence n  

can be written as follows [8]:  
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Having the image 
0

P
∞  of the vertex 0

0
P  as a function of 0

0
P  and its 

neighbourhood allows us to compute the distance between 0

0
P  
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0
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2.1.3 Doo-Sabin scheme  

 
Figure 5. Doo-Sabin mask for interior vertices. 

 
Figure 6. Topology of Doo-Sabin subdivision surfaces. 

This scheme generates tensor product biquadratic B-spline 
surfaces. It can be applied on arbitrary meshes. Figure 5 shows the 
mask to compute interior vertices for this scheme.  
When the new vertices are computed, faces are created as shown 
in Figure 6. Consider a control mesh at an arbitrary level of 
subdivision. Single lines represent interior edges and double lines 
represent boundary edges (Figure 6.a). Interior vertices are 
denoted by circles and boundary vertices are denoted by crosses 
(Figure 6.b). For each face, the new interior vertices are connected 
to create face faces. Old faces are now represented by dashes 
(Figure 6.c). For each edge, new vertices generated from the ends 
of an edge are connected to produce edge faces (Figure 6.d).For 
each vertex, new vertices generated from this vertex are joined to 
produce vertex faces (Figure 6.e).  

3. SUBDIVISION DEPTH 

Knowing the distance from the control mesh vertices to the limit 
surface allows us to determine the maximum distance between the 
control mesh and the limit surface. Indeed, subdivision surface 
properties are such that the control mesh vertices are the most 
distant points from the limit surface. If a vertex is inserted 
between two vertices of the control mesh, the distance between 
this vertex and the limit surface will inevitably be smaller (Figure 
7). This property is valid for any surface: convex or concave, open 
or closed… 

 
Figure 7. Distance from a midpoint to the limit surface. 

Cheng [3] generalizes his results on uniform cubic B-spline 
curves to Catmull-Clark surfaces. He demonstrates the following 
results for each segment at subdivision level i :  

Theorem 1. Let be ( )pC t  is the p th cubic B-spline curve 

segment at subdivision level i , ( )pL t  is the corresponding 

segment of the control polygon written in barycentric form and 

{ }1 1max 2 i i i

i k k k
k

M P P P− += − −  with i

kP  the vertices of the 

control polygon iP , we have : 

 ( ) ( ) ( ) 0
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6 6 4

i

p p iL t C t M M− ≤ ≤  (6) 

Corollary 1. With 0M  as in Theorem 1, for the control polygon 
to be close enough to the limit curve (within ε ), we need to 
perform at least i  levels of recursive subdivision with 

0
4log

6

M
i

ε
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. 

For surfaces, the result is similar [3].  

Theorem 2. Let ( ),pS u v  be a subpatch of a Catmull-Clark 

surface after i  levels of recursive subdivision and ( ),pL u v  the 

bilinear parametric representation of the central face of the control 
mesh corresponding to ( ),pS u v , we have: 
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Corollary 2. With 0M  as in Theorem 2, the control mesh 
approximates the limit surface with the accuracy ε  if the number 
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3.1 Loop case 

Notations used for the vertices ,

k

i jP  of the control mesh kP  at 

subdivision level k are described Figure 8. 

 
Figure 8. Notations used for the vertices of the control mesh. 

Theorem 3. Consider the distance from the limit surface 

( ),kS u v  and the central triangle ( ),kL u v  (bold triangle in 
Figure 8) at subdivision level k :  
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and n  is the valence of the vertex. 

Proof. The Loop scheme is an approximating scheme; the 
maximum distance between the control mesh and the limit surface 
is also obtained for the control vertices.  
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For the next level of subdivision, the same formula can be written:  
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1kM +  is bound up by a function of kM . 

Replacing the 1
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Due to the expression of β : 
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We obtain the recurrence relation: ( ) 0

5 8

8

k

k

n
M M

β−
≤ .         �  

Corollary 3. With 0M  and n  as in Theorem 3, the control mesh 
approximates the limit surface with the accuracy ε  if the number 
of recursive subdivision is at least k  with 
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Proof. The Theorem 3 gives: 

( ) ( ) ( ) 0

5 8
, ,

8

k

k k

k

n
S u v L u v M M

β
ε

−
− ≤ ≤ <  

The last part of the inequality can be written: 

( ) ( ) ( )0
0

5 5
ln ln 1

88

k
M

n M k nβ ε β
ε

⇔− < > − .         �  

In particular for “a regular mesh” with 6n = , we have: 

0
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M
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Table 1 gives the subdivision depth according to the given 
accuracy on a regular surface (valence is 6 for every vertex), the 
torus. In figures 12 to 16, the dark (resp. light) faces represent the 
faces whose distance to the limit surface is greater (resp. less) than 
ε . Except for Figure 10, all the surfaces are subdivided using the 
adaptive subdivision for readability (we generate a smaller 
number of faces, which allows us to more easily distinguish dark 
and light faces in figures). 
Many criteria may regulate adaptative subdivision (curvature [17], 
normal cone [11], dihedral angle [1] for instance). Here we used a 
geometric criterion: the distance between the control mesh and the 
limit surface. We subdivide the surface only where this distance is 
greater than a given threshold. 
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Figure 9. Different cases of subdivision in adaptative subdivision. 
Let us first define the terms used to explain how faces are 
subdivided in this adaptative subdivision: a vertex which is not 
displaced is called static and a vertex which is displaced is called 
mobile. Faces are classified into 4 categories according to the 
number of mobile vertices. Mobile vertices are depicted by circles 
in Figure 9 (top). When all vertices are static, the face is not 
subdivided (Figure 5.a.). Figure 9.b. illustrates the case where 
only one vertex is mobile; only two among the three new vertices 
are then mobile in order to avoid cracks. When there are two 
mobile vertices, face subdivision is almost normal except for the 
fact that one of the old vertices is static (Figure 9.c.). Finally when 
all vertices are mobile, subdivision is carried out in a normal way 
(Figure 9.d.).  
This adaptative subdivision scheme avoids cracks, but it does not 
allow a correct computation of the neighbourhood for all vertices. 
Indeed, faces are generated but correspondences between edges 
are not updated. Nevertheless, neighbourhood is not necessary 
because the distance from a static vertex to the limit surface does 
not change. We simply need to save it from one level to another. 
In the other cases, the neighbourhood is correct; the distance can 
thus be computed. 

Accuracy ε  0.5 0.1 0.01 0.05 0.001 

Subdivision depth 2 3 4 5 6 

Table 1. Subdivision depth necessary for accuracy ε  for the 
torus. 

Figure 10 shows the number of subdivisions necessary to obtain 
an accuracy ε  of 0.5 for the torus model which has regular 
valences everywhere. Figure 11 illustrates successive levels of 
subdivision to have an accuracy ε  of 0.1. We can easily verify 
that subdivision level k gives a correct result whereas level 1k −  
leaves non accurate vertices (dark areas). 

 
Figure 10. Subdivision of the torus ( 6n = ) with an accuracy ε of 

0.5. Torus dimensions: 13 12 4× ×  

 
Figure 11. Subdivision of the torus ( 6n = ) with an accuracy ε of 

0.1. 
We have to pay attention to the role of valence n . n  denotes the 
maximum valence of the mesh including the subdivision steps. 
When valences are strictly less than 6 on the initial control mesh, 

the maximum valence is 6 because all vertices inserted during the 
subdivision have valence 6. For instance, initial valences of the 
box are 4 or 5 so n  = 5. For ε  = 0.05, the subdivision depth k 
found for n  = 5 is 3. But k  is 4 when the maximum valence n is 
considered to be 6 due to subdivisions. Figure 12 shows 
successive subdivisions of the box. At level 3, some vertices are 
still further than ε  from the limit surface. Indeed, subdivision 
depth is 4. 

 
Figure 12. Box (dimensions: 8 11 12× × ). Valence of inserted 

vertices must be taken into account. 
In some cases, using the mean valence 6 is not sufficient. For 
instance, the surface in Figure 13 has a minimum valence of 4 and 
a maximum valence of 18. With an accuracy of 0.15, using mean 
valence gives a subdivision depth of 2, whereas the maximum 
valence gives 3, which is the true result. 

 
Figure 13. Spinning top (dimensions: 8 8 14× × ). Mean valence 

(6) is not enough. An error remains at level 2 near the pole (vertex 
of valence 18). 

Table 2 gives the subdivision depth as a function of a given 
accuracy in the dolphin model with arbitrary valences 
( � �3,11n ∈ ). Figure 14 shows the number of subdivisions 
necessary to obtain an accuracy ε  of 0.15. 

Accuracy ε  0.5 0.2 0.055 0.05 0.01 

Subdivision depth 2 3 4 5 8 

Table 2. Subdivision depth necessary as a function of the 
accuracy ε  in the dolphin model. 

 
Figure 14. Dolphin (dimensions: 94 31 29× ×  and � �3,11n ∈ ) 

with an accuracy of 0.15. 
Table 3 gives the subdivision depth as a function of a given 
accuracy in the bunny model with arbitrary valences 

( � �3,10n ∈ ). For an accuracy ε  with a difference of 32.10 , the 
subdivision depth increases by 1 (from 4 to 5) which represents an 
increased cost (memory and computation) even with adaptative 
subdivision. The same remark applies to table 2 (accuracy ε  

a. b. c. d. 
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passes from 0.055 to 0.05, which leads to an increase in the 
subdivision level from 4 to 5) 

Accuracy ε  0.5 0.1 0.05 0.012 0.01 

Subdivision depth 1 2 3 4 5 

Table 3. Subdivision depth necessary as a function of accuracy ε  
in the bunny model. 

Figure 15 shows the number of subdivisions necessary to obtain 
an accuracy ε  of 0.15 in the bunny model. 

 
Figure 15. The bunny (dimensions: 16 12 20× ×  and 

� �3,10n ∈ ) with an accuracy of 0.1. 

3.2 Doo-Sabin case 
3.2.1 Quadratic B-spline curves 
The even and odd vertices of the next level of subdivision are 
computed as follows: 
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As for cubic B-Spline curves, Theorem 4 can be demonstrated: 
Theorem 4. Let be ( )pC t  the quadratic B-spline p th curve 

segment at subdivision level i , ( )pL t  the corresponding 

segment of the control polygon written in barycentric form and 

{ }1 1max 2 i i i

i k k k
k

M P P P− += − −  with i

kP  the vertices of the 

control polygon iP . We have: 
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i

p p iL t C t M M− ≤ ≤  (10) 

Proof. Let ( )L t  be the barycentric form of the segments 

[ ]0 0

0 1,M P  and [ ]0 0

1 1,P M and ( )C t  the corresponding curve 

segment of the quadratic B-spline curve. 
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1 1,L t C t d P P∞− ≤  because the control mesh is the 

furthest from the limit curve at the control vertices in 
approximating schemes. Moreover, 
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8
L t C t P P P− ≤ − + . 

 
Figure 16. Uniform quadratic B-spline curve and its inital control 

polygon. 

 
Figure 17. Uniform quadratic B-spline curve, its initial control 

polygon and control vertices of the next subdivision level. 
When the curve is subdivided, this result applies to both segments 
of curve, yielding:  
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Using formulas for even and odd vertices, we obtain:  
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M P P P− += − −  and i

kP  the control vertices of 

the control mesh iP . This gives the following recurrence relation: 

( ) 0

1

4

i

iM M≤  and consequently: 

( ) ( ) ( ) 0

1 1 1

8 8 4

i

p p iL t C t M M− ≤ ≤ .         �  

0
0P

0
1P

0
2P

0
0M

0
1M

0
0P

0
1P

0
2P

0
0M

0
1M

1
0P

1
1P 1

2P

1
3P
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Corollary 4. With 0M  as in Theorem 4, for the control polygon 
to be close enough to the limit curve (within ε ), we need to 
perform at least i  levels of recursive subdivision with 

0
4log

8

M
i

ε
≥    

. 

 
Proof. Let ε  be a given accuracy, ( ) ( )p pL t C t ε− ≤  if 

( ) 0

1 1

8 4

i

M ε≤  i.e. 0
4log

8

M
i

ε
≥    

.          �  

3.2.2 Bi quadratic B-spline surfaces 

Theorem 5. Let ( ),pS u v  be a patch of Doo-Sabin surface after 

i  subdivisions and ( ),pL u v  the corresponding control mesh, we 

then have: 

 ( ) ( ) ( ) 0

1 1 1
, ,

4 4 4

i

p p iL u v S u v M M− ≤ ≤  (11) 

where { }, 1, 2, , , 1 , 2
,

max 2 , 2i i i i i i

i k l k l k l k l k l k l
k l

M P P P P P P+ + + += − + − +  

when ,

i

k lP  are the control vertices of the control mesh iM .  
Proof : 

 
Figure 18. Uniform biquadratic B-spline surface and its initial 

control polyhedron. 

( ) ( ) ( ) ( )0 0

1,1 1,1, , , ,L u v S u v d P P S u v∞− ≤ = −M  because 

the Doo-Sabin scheme is approximating. Moreover, 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0

1,1

2 2 2 2
0 2 0 2 0 2 2 0

1,1 ,1 ,1 ,
0 0 0 0

2 2 2
0 2 0 2 0 2 0

1,1 ,1 ,1 ,
0 0 0

0 0 0

0,1 1,1 2,1 0 0

,

1 1 1
2

8 8 4

i i i i i j i j
i i i j

i i i i j i j
i i j

P S u v

P B u P B u P B u B v P

P B u P B u P B v P

P P P M M

= = = =

= = =

−

= − + −

≤ − + −

≤ − + +

 
  

≤

∑ ∑ ∑∑

∑ ∑ ∑

because ( )
2

2

0

1i
i

B u
=

=∑  and with 

� �
� �

{ }0 0 0 0 0 0

0 0, 1, 2 , ,0 ,1 ,2
0 ,2
0 ,2

max 2 , 2l l l k k k
k
l

M P P P P P P
∈
∈

= − + − + . 

 
Figure 19. Uniform biquadratic B-spline surface: its initial 

control polyhedron and the control vertices at the next level. 
When the surface is subdivided, this result can be used again on 
the four sub-patches of surface: 

( ) ( )

� �
� �

{ }1 1 1 1 1 1

0, 1, 2, ,0 ,1 ,2
0 ,2
0 ,2

, ,

1
max 2 , 2

4
,l l l k k k

k
l

L u v S u v

P P P P P P
∈
∈

−

≤ − + − +
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� �
� �

{ }1 1 1 1 1 1

1, 2 , 3, ,0 ,1 ,2
1,3
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1 , 1 ,
2 2 2 2

1
max 2 , 2

4
,l l l k k k

k
l

u v u v
L S

P P P P P P
∈
∈

− − −

≤ − + − +
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� �
� �

{ }1 1 1 1 1 1

0, 1, 2, ,1 ,2 ,3
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,1 ,1
2 2 2 2

1
max 2 , 2  and

4
l l l k k k

k
l

u v u v
L S

P P P P P P
∈
∈

− − −

≤ − + − +

( ) ( )
� �
� �

{ }1 1 1 1 1 1
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1,3
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1 ,1 1 ,1
2 2 2 2

1
max 2 , 2

4
.l l l k k k

k
l

u v u v
L S

P P P P P P
∈
∈

− − − − −
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Moreover, 

1 1 1 0 0 0

0, 1, 2 , 0, 1, 2 ,

1
2 2

4
l l l l l lP P P P P P− + = − + , 

1 1 1 0 0 0
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1
2 2

4
k k k k k kP P P P P P− + = − + , 

1 1 1 0 0 0

,1 ,2 ,3 ,1 ,2 ,3

1
2 2

4
k k k k k kP P P P P P− + = − + , 

1 1 1 0 0 0

1, 2 , 3, 1, 2, 3,

1
2 2

4
l l l l l lP P P P P P− + = − +  and 

so 1 0

1

4
M M≤  where 

{ }, 1, 2, , , 1 , 2
,

max 2 , 2i i i i i i

i k l k l k l k l k l k l
k l

M P P P P P P+ + + += − + − + . 
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This gives the following recurrence relation ( ) 0

1

4

i

iM M≤  and 

then ( ) ( ) ( ) 0

1 1 1
, ,

4 4 4

i

p p iL u v S u v M M− ≤ ≤ .        �  

Corollary 5. The control mesh approximates the limit surface 
with an accuracy of ε  if the number of recursive subdivisions i  

verifies: 0
4log

4

M
i

ε
≥    

. 

Proof. Let ε  be a given accuracy, ( ) ( ), ,p pL u v S u v ε− ≤  if 

( ) 0

1 1

4 4

i

M ε≤  i.e. 0
4log

4

M
i

ε
≥    

.          �  

This result is demonstrated in the particular case where valence is 
regular (4 for Doo-Sabin).  

4. CONCLUSION 

We studied the subdivision depth necessary to obtain a given 
accuracy ε  in the traditional schemes, namely Loop, Doo-Sabin 
and Catmull-Clark schemes.  
The subdivision can then be performed without any distance 
computation since we are sure of reaching the desired accuracy. 
Moreover, it allows us to predefine memory requirements (the 
initial mesh and the level of subdivision are enough to compute 
the number of faces in the final mesh). The subdivision can also 
be adaptative. In this case, we do not save computation time as the 
distance criterion has to be evaluated at each subdivision. But the 
user may modify his accuracy criterion if the subdivision level is 
too high. 
In Loop subdivision, the demonstration is carried out in a general 
case, whatever the valences of the surface vertices. The 
subdivision depth for Doo-Sabin subdivision is only treated for 
vertices of regular valence (4). But this is not a restriction because 
after one step of subdivision, the valence of any vertex of the 
Doo-Sabin surface is four. One of our future projects is to 
generalize the demonstration for Catmull-Clark surfaces for 
arbitrary valences. Moreover, since we know the subdivision level 
k , we have to verify whether a n -adic subdivision may be used 

to directly compute the final surface (with 2kn = ). 
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